skip to main content


Search for: All records

Creators/Authors contains: "Price, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We carried out 3D smoothed particle hydrodynamics simulations of the common envelope binary interaction using the approximation of Bowen to calculate the dust opacity in order to investigate the resulting dust-driven accelerations. We have simulated two types of binary star: a 1.7 and a 3.7 M⊙ thermally pulsating, asymptotic giant branch stars with a 0.6 M⊙ companion. We carried out simulations using both an ideal gas and a tabulated equations of state, with the latter considering the recombination energy of the envelope. We found that the dust-driven wind leads to a relatively small increase in the unbound gas, with the effect being smaller for the tabulated equation of state simulations. Dust acceleration does contribute to envelope expansion with only a slightly elongated morphology, if we believe the results from the tabulated equation of state as more reliable. The Bowen opacities in the outer envelopes of the two models, at late times, are large enough that the photosphere of the post-in spiral object is about ten times larger compared to the same without accounting for the dust opacities. As such, the prediction of the appearance of the transient would change substantially if dust is included.

     
    more » « less
  2. Abstract

    We use numerical simulations of circumplanetary disks to determine the boundary between disks that are radially truncated by the tidal potential and those where gas escapes the Hill sphere. We consider a model problem, in which a coplanar circumplanetary disk is resupplied with gas at an injection radius smaller than the Hill radius. We evolve the disk using thePhantomsmoothed particle hydrodynamics code until a steady state is reached. We find that the most significant dependence of the truncation boundary is on the disk aspect ratioH/R. Circumplanetary disks are efficiently truncated forH/R≲ 0.2. ForH/R≃ 0.3, up to about half of the injected mass, depending on the injection radius, flows outward through the decretion disk and escapes. As expected from analytic arguments, the conditions (H/Rand Shakura–Sunyaevα) required for tidal truncation are independent of planet mass. A simulation with largerα= 0.1 shows stronger outflow than one withα= 0.01, but the dependence on transport efficiency is less important than variations ofH/R. Our results suggest two distinct classes of circumplanetary disks: tidally truncated thin disks with dust-poor outer regions, and thicker actively decreting disks with enhanced dust-to-gas ratios. Applying our results to the PDS 70 c system, we predict a largely truncated circumplanetary disk, but it is possible that enough mass escapes to support an outward flow of dust that could explain the observed disk size.

     
    more » « less
  3. ABSTRACT

    Young protostellar discs are likely to be both self-gravitating, and to support grain growth to sizes where the particles decoupled from the gas. This combination could lead to short-wavelength fragmentation of the solid component in otherwise non-fragmenting gas discs, forming Earth-mass solid cores during the Class 0/I stages of young stellar object evolution. We use three-dimensional smoothed particle hydrodynamics simulations of two-fluid discs, in the regime where the Stokes number of the particles St > 1, to study how the formation of solid clumps depends on the disc-to-star mass ratio, the strength of gravitational instability, and the Stokes number. Gravitational instability of the simulated discs is sustained by local cooling. We find that the ability of the spiral structures to concentrate solids increases with the cooling time and decreases with the Stokes number, while the relative dynamical temperature between gas and dust of the particles decreases with the cooling time and the disc-to-star mass ratio and increases with the Stokes number. Dust collapse occurs in a subset of high disc mass simulations, yielding clumps whose mass is close to linear theory estimates, namely 1–10 M⊕. Our results suggest that if planet formation occurs via this mechanism, the best conditions correspond to near the end of the self-gravitating phase, when the cooling time is long and the Stokes number close to unity.

     
    more » « less
  4. Abstract

    The role of recombination during a common-envelope event has been long debated. Many studies have argued that much of hydrogen recombination energy, which is radiated in relatively cool and optically thin layers, might not thermalize in the envelope. On the other hand, helium recombination contains ≈30 per cent of the total recombination energy, and occurs much deeper in the stellar envelope. We investigate the distinct roles played by hydrogen and helium recombination in a common-envelope interaction experienced by a 12 $\, \rm {M}_{\odot }$ red supergiant donor. We perform adiabatic, 3D hydrodynamical simulations that (i) include hydrogen, helium, and H2 recombination, (ii) include hydrogen and helium recombination, (iii) include only helium recombination, and (iv) do not include recombination energy. By comparing these simulations, we find that the addition of helium recombination energy alone ejects 30 per cent more envelope mass, and leads to a 16 per cent larger post-plunge-in separation. Under the adiabatic assumption, adding hydrogen recombination energy increases the amount of ejected mass by a further 40 per cent, possibly unbinding the entire envelope, but does not affect the post-plunge separation. Most of the ejecta becomes unbound at relatively high (>70 per cent) degrees of hydrogen ionisation, where the hydrogen recombination energy is likely to expand the envelope instead of being radiated away.

     
    more » « less
  5. ABSTRACT During the common-envelope binary interaction, the expanding layers of the gaseous common envelope recombine and the resulting recombination energy has been suggested as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative study between simulations with and without the inclusion of recombination energy. We use two distinct setups, comprising a 0.88- and 1.8-M⊙ giants, that have been studied before and can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not affected by the choice of equation of state (EoS). In other words, simulations that unbind but a small fraction of the envelope result in similar final separations to those that, thanks to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS results in a much greater fraction of unbound envelope and we demonstrate the cause of this to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy that is allowed to do work should be about half of that which our adiabatic simulations use. (iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen recombination energy that unbinds the gas and we determine that all helium recombination energy is thermalized in the envelope and does work. (v) The outer regions of the expanding common envelope are likely to see the formation of dust. This dust would promote additional unbinding and shaping of the ejected envelope into axisymmetric morphologies. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    ABSTRACT We present 1.3 mm continuum ALMA long-baseline observations at 3–5 au resolution of 10 of the brightest discs from the Ophiuchus DIsc Survey Employing ALMA (ODISEA) project. We identify a total of 26 narrow rings and gaps distributed in 8 sources and 3 discs with small dust cavities (r <10 au). We find that two discs around embedded protostars lack the clear gaps and rings that are ubiquitous in more evolved sources with Class II SEDs. Our sample includes five objects with previously known large dust cavities (r >20 au). We find that the 1.3 mm radial profiles of these objects are in good agreement with those produced by numerical simulations of dust evolution and planet–disc interactions, which predict the accumulation of mm-sized grains at the edges of planet-induced cavities. Our long-baseline observations resulted in the largest sample of discs observed at ∼3–5 au resolution in any given star-forming region (15 objects when combined with Ophiuchus objects in the DSHARP Large Program) and allow for a demographic study of the brightest $\sim\! 5{{\ \rm per\ cent}}$ of the discs in Ophiuchus (i.e. the most likely formation sites of giant planets in the cloud). We use this unique sample to propose an evolutionary sequence and discuss a scenario in which the substructures observed in massive protoplanetary discs are mainly the result of planet formation and dust evolution. If this scenario is correct, the detailed study of disc substructures might provide a window to investigate a population of planets that remains mostly undetectable by other techniques. 
    more » « less
  8. null (Ed.)